Hereditary Conjugacy Separability of Right Angled Artin Groups and Its Applications
نویسنده
چکیده
We prove that finite index subgroups of right angled Artin groups are conjugacy separable. We then apply this result to establish various properties of other classes of groups. In particular, we show that any word hyperbolic Coxeter group contains a conjugacy separable subgroup of finite index and has a residually finite outer automorphism group. Another consequence of the main result is that Bestvina-Brady groups are conjugacy separable and have solvable conjugacy problem.
منابع مشابه
Se p 20 06 On the profinite topology of right - angled Artin groups
In the present work, we give necessary and sufficient conditions on the graph of a right-angled Artin group that determine whether the group is subgroup separable or not. Also, we show that right-angled Artin groups are conjugacy separable. Moreover, we investigate the profinite topology of F 2 × F 2 and of the group L in [22], which are the only obstructions for the subgroup separability of th...
متن کامل2 00 6 On the profinite topology of right - angled Artin groups
In the present work, we give necessary and sufficient conditions on the graph of a right-angled Artin group that determine whether the group is subgroup separable or not. Also, we show that right-angled Artin groups are conjugacy separable. Moreover, we investigate the profinite topology of F 2 × F 2 and of the group L in [22], which are the only obstructions for the subgroup separability of th...
متن کاملThe conjugacy problem in subgroups of right-angled Artin groups
We prove that the conjugacy problem in a large and natural class of subgroups of right-angled Artin groups (RAAGs), can be solved in linear-time. This class of subgroups has been previously studied by Crisp and Wiest, and independently by Haglund and Wise, as fundamental groups of compact special cube complexes.
متن کاملCompressed Decision Problems for Graph Products and Applications to (outer) Automorphism Groups
It is shown that the compressed word problem of a graph product of finitely generated groups is polynomial time Turing-reducible to the compressed word problems of the vertex groups. A direct corollary of this result is that the word problem for the automorphism group of a right-angled Artin group or a right-angled Coxeter group can be solved in polynomial time. Moreover, it is shown that a res...
متن کاملOn the Profinite Topology of Right-angled Artin Groups
In the present work, we give necessary and sufficient conditions on the graph of a right-angled Artin group that determine whether the group is subgroup separable or not. Also we show that right-angled Artin groups are residually torsion-free nilpotent. Moreover, we investigate the profinite topology of F2 × F2 and of the group L in [18], which are the only obstructions for the subgroup separab...
متن کامل